Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors.

نویسنده

  • Gladys Alexandre
چکیده

Bacteria have evolved the ability to monitor changes in various physico-chemical parameters and to adapt their physiology and metabolism by implementing appropriate cellular responses to these changes. Energy taxis is a metabolism-dependent form of taxis and is the directed movement of motile bacteria in gradients of physico-chemical parameters that affect metabolism. Energy taxis has been described in diverse bacterial species and several dedicated energy sensors have been identified. The molecular mechanism of energy taxis has not been studied in as much detail as chemotaxis, but experimental evidence indicates that this behaviour differs from metabolism-independent taxis only by the presence of dedicated energy taxis receptors. Energy taxis receptors perceive changes in energy-related parameters, including signals related to the redox and/or intracellular energy status of the cell. The best-characterized energy taxis receptors are those that sense the redox state of the electron transport chain via non-covalently bound FAD cofactors. Other receptors shown to mediate energy taxis lack any recognizable redox cofactor or conserved energy-sensing motif, and some have been suggested to monitor changes in the proton motive force. The exact energy-sensing mechanism(s) involved are yet to be elucidated for most of these energy sensors. By monitoring changes in energy-related parameters, energy taxis receptors allow cells to couple motility behaviour with metabolism under diverse environmental conditions. Energy taxis receptors thus provide fruitful models to decipher how cells integrate sensory behaviours with metabolic activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy taxis is the dominant behavior in Azospirillum brasilense.

Energy taxis encompasses aerotaxis, phototaxis, redox taxis, taxis to alternative electron acceptors, and chemotaxis to oxidizable substrates. The signal for this type of behavior is originated within the electron transport system. Energy taxis was demonstrated, as a part of an overall behavior, in several microbial species, but it did not appear as the dominant determinant in any of them. In t...

متن کامل

An energy taxis transducer promotes root colonization by Azospirillum brasilense.

Motility responses triggered by changes in the electron transport system are collectively known as energy taxis. In Azospirillum brasilense, energy taxis was shown to be the principal form of locomotor control. In the present study, we have identified a novel chemoreceptor-like protein, named Tlp1, which serves as an energy taxis transducer. The Tlp1 protein is predicted to have an N-terminal p...

متن کامل

Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium.

Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was pres...

متن کامل

Salmonella Uses Energy Taxis to Benefit from Intestinal Inflammation

Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vi...

متن کامل

Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.

The phenylacetic acid (PAA) degradation pathway is a widely distributed funneling pathway for the catabolism of aromatic compounds, including the environmental pollutants styrene and ethylbenzene. However, bacterial chemotaxis to PAA has not been studied. The chemotactic strain Pseudomonas putida F1 has the ability to utilize PAA as a sole carbon and energy source. We identified a putative PAA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 156 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2010